如何判断金属材料的可锻造性能?

2023-05-24 12:25 山西中重重工集团

众所周知,金属可以通过工业工艺进行改变形状和性能,有比较好的可锻造性能和可塑性。金属的可锻性是衡量材料在经受压力加工时获得好制品难易程度的工艺性能。所以今天中重重工锻造小编就来跟大家说说如何判断金属材料的可锻造性能?



对金属可锻性影响较大的因素为金属本身的塑形,塑性越好,锻打时越不容易开裂。金属的塑性与金属的组织密切相关,晶粒越细小、组织越均匀塑性就越好。所以可以通过细化晶粒,均匀组织来改善金属的可锻性。金属材料在压力加工时,能改变形状而不产生裂纹的性能。它包括在热态或冷态下能够进行锤锻、轧制、拉伸、挤压等加工。可锻性的好坏主要与金属材料的化学成分有关。



金属的可锻性好,表明该金属适合于采用压力加工成型;可锻性差,表明该金属不适宜选用压力加工方法成型。可锻性常用金属的塑形和变形抗力来综合衡量。塑性越好,变形抗力越小,则金属的可锻性好,反之则差。金属的塑性用金属的断面收缩率ψ、伸长率δ等来表示。变形抗力是指在压力加工过程中变形金属作用于施压工具表面单位面积上的压力。变形抗力越小,则变形中所消耗的能量也越小。

锻件


一、金属的本质


1.化学成分的影响


不同化学成分的金属其可锻性不同。一般情况下,纯金属的可锻性比合金好;碳钢的碳的质量分数越低,可锻性越好;钢中含有较多碳化物形成元素(铬、钨、钼、钒等)时,则其可锻性显著下降。


2.金属组织的影响


金属的组织构造不同,其可锻性也有很大差别。合金呈单相固溶体组织(如奥氏体)时,其可锻性好;而金属具有金属化合物组织(如渗碳体)时,其可锻性差。铸态柱状组织和粗晶粒不如经过压力加工后的均匀而细小的组织可锻性好。

锻件


二、加工条件


1.变形温度


提高金属变形时的温度,是改善金属可锻性的有效措施。金属在加热过程中,随着加热温度的升高,金属原子的活动能力增强,原子间的吸引力减弱,容易产生滑移,因而塑性提高,变形抗力降低,可锻性明显改善,故锻造一般都在高温下进行。金属的加热在整个生产过程中是一个重要的环节,它直接影响着生产率、产品质量及金属的有效利用等方面。对金属加热的要求是:在坯料均匀热透的条件下,能以较短的时间获得加工所需的温度,同时保持金属的完整性,并使金属及燃料的消耗最少。其中重要内容之一是确定金属的锻造温度范围,即合理的始锻温度和终锻温度。


2.变形速度


变形速度即单位时间内的变形程度。变形速度对金属可锻性的影响如图2所示。由图可见,它对可锻性的影响是矛盾的。一方面随着变形速度的提高,回复和再结晶来不及进行,不能及时克服加工硬化现象,使金属的塑性下降,变形抗力增加,可锻性变坏。另一方面,金属在变形过程中,消耗于塑性变形的能量有一部分转化为热能,相当于给金属加热,使金属的塑性提高、变形抗力下降,可锻性变好。变形速度越大,热效应越明显。


3.变形方式(应力状态)


变形方式不同,变形金属内应力状态不同。例如挤压变形时为三向受压状态;而拉拔时则为两向受压、一向受拉的状态;镦粗时坯料中心部分的应力状态是三向压应力,周边部分上下和径向是压应力,切向是拉应力。



因此可以得出结论,金属的可锻性既取决于金属的本质,又取决于变形条件。在压力加工过程中,要力求创造最有利的变形条件,充分发挥金属的塑性,降低变形抗力,使能耗最少,变形进行得充分,达到更好效果。选择中重,选择品质!